Wildfire Smoke Contribution to Surface PM_{2.5} in Halifax, Nova Scotia during the BORTAS-B Experiment

Mark D. Gibson¹, Jeffrey Pierce^{2/3}, Tom Duck², Jason Hopper^{1/2}, Stephen Beauchamp⁴ David Waugh⁴, James Kuchta⁵, Gavin King¹, Jan Haelssig¹, Tony J. Ward⁶, Mark Parrington⁷, Paul Palmer⁷

DALHOUSIE UNIVERSITY Inspiring Minds National Smoke Forum, Wildland Fire Canada Conference, Halifax, NS, Canada, Oct 10th 2014

- Boreal forest fires burn an average of 2.3 million hectares of Canadian wildland annually (Natural Resources Canada).
- These biomass burning events are a significant source of fine airborne particulate matter with a median aerodynamic diameter less than, or equal to, 2.5 microns (PM_{2.5}) and trace gases to the atmosphere.
- In addition to the significant local ecosystem and air quality impacts, it has been demonstrated that wildfire smoke plumes are capable of undergoing significant long range transport (LRT) > chemical transformation en route > forming additional secondary gases and PM_{2.5}.

(Crutzen and Andreae, 1990; Cooper et al., 2002; Derwent et al., 2004)

Objective of the ground based PM_{2.5} sampling during BORTAS-B

To identify and apportion the major sources driving the temporal variability of PM_{2.5} in Halifax, Nova Scotia

With a special focus on apportioning the boreal wildfire contribution to PM_{2.5}

Trace gas species and size resolved particle mass, number and chemical speciation Palmer et al., (2013) ACP 13 p6239

> Gibson et al., (2013) ACP 13 p7199

Franklin et al., (2014) 14 p8449

Gibson et al (2014) ACPD 14, p24043

Dalhousie Ground Station (DGS) Location

2x Thermo ChemCombs for PM_{2.5} Speciation @ 10L/min (1x 47 mm pre-fired quartz and 1x 47 mm nylon filter)

Continuous PM_{2.5} (TSI DustTrak) nephelometer

Dalhousie Ground Station (DGS)

Dalhousie Raman Lidar (lower and upper troposphere AOD)

4 Receptor models

Receptor Models Used 1. Pragmatic Mass Closure

calculated using molar ratios and enrichment factors of individual chemical species present

e.g. $NH_4NO_3 = (NH_4*4.44)*0.29$ (particle bound water)

Dabek, E. et al., (2011) Atmospheric Environment. 45 (3) p673 Yin, J. et al (2008) Atmospheric Environment, 42 (5) p980

woodsmoke = levoglucosan x 52 (*Gibson et al., 2013 EGU*)

New enrichment factor

Gibson, M.D., et al. (2014). A comparison of four receptor models used to quantify the boreal wildfire smoke contribution to surface PM_{2.5} in Halifax, Nova Scotia during the BORTAS-B experiment. Atmos. Chem. and Phys. Discussions. 14, pp24043-24086

2. Absolute Principal Component Scores

Multivariate factor analysis based approach

Thurston, G.D., et al., (1985) Atmospheric Environment, 19 (1) p9

Guo, H. et al., (2004) Environmental Pollution, 129 (3) p489

Bruno, P., et al., (2001) Fresenius J. of Analytical Chemistry, 371 p1119

Gibson, M.D., et al. (2014). Atmos. Chem. Phys. Disc. 14, p24043

Absolute Principal Component Scores (APCS) and Positive Matrix Factorization

User has to **determine the PM_{2.5} source** within factor profiles from *a priori* knowledge of source chemical markers, e.g.

• Boreal forest wild fire smoke = high factor scores for levoglucosan,

black carbon and K

- Secondary Ions (Long-range Transport), OM, NH₄⁺, NO₃⁻, S and SO₄²⁻
- LRT Pollution marine aerosol mix = NO_3^{-} , Mg^{2+} and Na^{+}
- Ship emissions = Ni and V
- Surface dust = Al, Fe, Si and Ca

Time Series of the Absolute Principal Component Scores Receptor Model Results 11 July to 24 July 2011

3. USEPA Chemical Mass Balance

Multivariate least squares source profile model.

Identifies the source of PM_{2.5} by matching chemical species in the sample with those in known source profiles

Followed by determining the relative source contribution to $PM_{2.5}$

Ward, T.J., et al. (2012). PM_{2.5} source apportionment in a subarctic airshed -Fairbanks, Alaska. *Aerosol and Air Quality Research* 12, 536-543.

Ward, T.J., et al. (2006). The 2003/2004 Libby, Montana PM_{2.5} source apportionment research study. *Aerosol Science and Technology* 40, 166-177.

Gibson, M.D., et al. (2014). A comparison of four receptor models used to quantify the boreal wildfire smoke contribution to surface PM2.5 in Halifax, Nova Scotia during the BORTAS-B experiment. Atmos. Chem. and Phys. Discussions. 14, pp24043-24086

Time Series of the Chemical Mass Balance Receptor Model Results 11 July to 24 July 2011

4. USEPA Positive Matrix Factorization

Multivariate factor analysis based approach

prevents "non-negative" mass contributions

Gibson, M.D., et al. (2014). A comparison of four receptor models used to quantify the boreal wildfire smoke contribution to surface PM_{2.5} in Halifax, Nova Scotia during the BORTAS-B experiment. Atmos. Chem. and Phys. Discussions. 14, pp24043-24086

Gibson, M.D., et al. (2013). Identifying the sources driving observed PM_{2.5} temporal variability over Halifax, Nova Scotia, during BORTAS-B. *Atmos. Chem. and Phys. 13, pp7199-7213*.

Jeong, C.-H., et al. (2008). Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia. *Atmospheric Environment* 42, 3684-3699.

Time Series of the Positive Matrix Factorization Receptor Model Results 11 July to 24 July 2011

Daily NOAA HYSPLIT air mass back trajectories during BORTAS (http://ready.arl.noaa.gov/hysplit-bin/trajtype.pl?runtype=archive)

No Upwind Fire activity

Northerly airflow from clean source regions characterized by low PM_{2.5} mass and low woodsmoke mass contributions

These woodsmoke spikes were associated with NE airflow that crossed Newfoundland and Cape Breton, en route to Halifax

These woodsmoke spikes were associated with NE airflow that crossed Newfoundland and Cape Breton, en route to Halifax

Marine air flow resulted very low PM_{2.5}-woodsmoke contributions

Ontario boreal forest fire woodsmoke event

FLEXPART 5-DAY Air Parcel Forward Trajectory Model 17 July to 22 July 2011 Air parcel crosses large forest fire in Northern Ontario, eventually impacting Halifax, Nova Scotia

 $10^{0.0}$

Courtesy of Jason Hopper

FLEXPART Model of the Ontario forest fire smoke concentration directly above Halifax – 20 July to 22 July 2011

a) Lidar back scatter cross section DGS, 20/21 July 2011

d) Spiral aircraft profiles over the DGS, 21 July 2011

Comparison of simultaneous observations

a) Lidar backscatter cross section DGS, 20/21 July 2011

b) GEOS-5 CO forecast at the DGS 20/21 July, 2011

c) FLEXPART vertical PM_{2.5} profile, DGS, 21 July 2011

d) Spiral aircraft profiles over the DGS, 21 July 2011.

*Vertical dashed lines in a), b) and c) indicate the time of the spiral aircraft profiles in d)

5-day HYSPLIT air mass back trajectory arriving at 12:00 UTC overlaying the fire hot spot map for 28 July 2011

NASA AQUA MODIS true colour satellite image at 18:00 UTC on 18 July 2011 clearly showing boreal forest fire smoke from Northern Ontario advecting over Halifax, Nova Scotia

Positive Matrix Factorization (PMF) predicted versus observed PM_{2.5}

PM_{2.5} source apportionment by Positive Matrix Factorization data labels = mass ($\mu g/m^3$), % relative contributions

Summary

- Between 5 and 12 Sources identified by the four receptor models
- Only PMF can predict total $\text{PM}_{2.5}$ mass concentrations below 2.0 $\mu\text{g}/\text{m}^3.$
- Positive Matrix Factorization performed the best of the four receptor models.
- The use of a woodsmoke chemical marker such as levoglucosan is critical when carrying out $PM_{2.5}$ source apportionment studies of that include woodsmoke.
- The study has demonstrated the utility of using satellites, chemical transport models, aircraft, air mass trajectories to support in situ measurements of size-resolved $PM_{2.5}$ species
- All of the receptor models provide further insight into the main sources driving the temporal variability of PM_{2.5} in Halifax during BORTAS-B project.

Next Steps

Tube Furnace Combustion Product Source Profiling Experiments to Verify the Receptor Modelling Results

Acknowledgements

 Professor Paul Palmer (BORTAS lead) University of Edinburgh, School of GeoSciences for funding project consumables *via* Philip Leverhulme Prize

